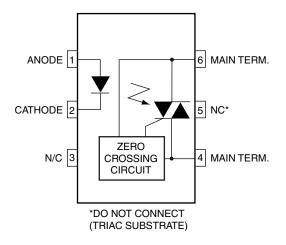


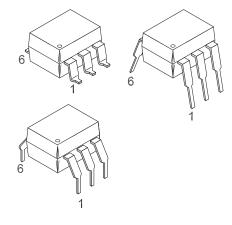
MOC3061M, MOC3062M, MOC3063M, MOC3162M, MOC3163M 6-Pin DIP Zero-Cross Phototriac Driver Optocoupler (600 Volt Peak)

Features

- Simplifies logic control of 115/240 VAC power
- Zero voltage crossing
- dv/dt of 1000V/µs guaranteed (MOC316X-M),
 - 600V/µs guaranteed (MOC306X-M)
- VDE recognized (File # 94766)
 - ordering option V (e.g., MOC3063V-M)
- Underwriters Laboratories (UL) recognized (File #E90700, volume 2)


Applications

- Solenoid/valve controls
- Static power switches
- Temperature controls
- AC motor starters
- Lighting controls
- AC motor drives
- E.M. contactors
- Solid state relays


Description

The MOC306XM and MOC316XM devices consist of a GaAs infrared emitting diode optically coupled to a monolithic silicon detector performing the function of a zero voltage crossing bilateral triac driver. They are designed for use with a triac in the interface of logic systems to equipment powered from 115/240 VAC lines, such as solid-state relays, industrial controls, motors, solenoids and consumer appliances, etc.

Schematic

Package Outlines

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters	Device	Value	Units
TOTAL DEV	ICE			
T _{STG}	Storage Temperature	All	-40 to +150	°C
T _{OPR}	Operating Temperature	All	-40 to +85	°C
T _{SOL}	Lead Solder Temperature	All	260 for 10 sec	°C
TJ	Junction Temperature Range	All	-40 to +100	°C
V _{ISO}	Isolation Surge Voltage ⁽¹⁾ (peak AC voltage, 60Hz, 1 sec. duration)	All	7500	Vac(pk)
P _D	Total Device Power Dissipation @ 25°C Ambient	All	250	mW
	Derate above 25°C		2.94	mW/°C
EMITTER			•	
I _F	Continuous Forward Current	All	60	mA
V _R	Reverse Voltage	All	6	V
P _D	Total Power Dissipation @ 25°C Ambient	All	120	mW
	Derate above 25°C		1.41	mW/°C
DETECTOR			•	
V _{DRM}	Off-State Output Terminal Voltage	All	600	V
I _{TSM}	Peak Repetitive Surge Current (PW = 100µs, 120pps)	All	1	А
P _D	Total Power Dissipation @ 25°C Ambient	All	150	mW
	Derate above 25°C		1.76	mW/°C

Note:

^{1.} Isolation surge voltage, V_{ISO}, is an internal device dielectric breakdown rating. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.

Electrical Characteristics (T_A = 25°C Unless otherwise specified)

Individual Component Characteristics

Symbol	Parameters	Test Conditions	Device	Min.	Тур.*	Max.	Units
EMITTER							
V _F	Input Forward Voltage	I _F = 30mA	All		1.3	1.5	V
I _R	Reverse Leakage Current	V _R = 6V	All		0.005	100	μΑ
DETECTO	DETECTOR						
I _{DRM1}	Peak Blocking Current,	$V_{DRM} = 600V, I_F = 0^{(2)}$	MOC316XM		10	100	nA
	Either Direction		MOC306XM		10	500	IIA
dv/dt	Critical Rate of Rise of	I _F = 0 (Figure 9) ⁽³⁾	MOC306XM	600	1500		V/µs
	Off-State Voltage		MOC316XM	1000			ν/μ5

Transfer Characteristics

Symbol	DC Characteristics	Test Conditions	Device	Min.	Тур.*	Max.	Units
I _{FT}	LED Trigger Current	Main Terminal	MOC3061M			15	mA
	(rated I _{FT})	Voltage = 3V ⁽³⁾	MOC3062M/ MOC3162M			10	
			MOC3063M/ MOC3163M			5	
V _{TM}	Peak On-State Voltage, Either Direction	I _{TM} = 100 mA peak, I _F = rated I _{FT}	All		1.8	3	V
I _H	Holding Current, Either Direction		All		500		μA

Zero Crossing Characteristics

Symbol	Characteristics	Test Conditions	Device	Min.	Тур.*	Max.	Units
V _{INH}	Inhibit Voltage (MT1-MT2	I _F = Rated I _{FT}	MOC3061M/2M/3M		12	20	V
	voltage above which device will not trigger)		MOC3162M/3M		12	15	
I _{DRM2}	Leakage in Inhibited State	I_F = Rated I_{FT} , V_{DRM} = 600V, off state	All		150	500	μА

Isolation Characteristics

Symbol	Characteristics	Test Conditions	Device	Min.	Тур.*	Max.	Units
V _{ISO}	Isolation Voltage	f = 60 Hz, t = 1 sec	All	7500			V

^{*}Typical values at $T_A = 25$ °C

Notes:

- 2. Test voltage must be applied within dv/dt rating.
- 3. All devices are guaranteed to trigger at an I_F value less than or equal to max I_{FT} . Therefore, recommended operating I_F lies between max I_{FT} (15mA for MOC3061M, 10mA for MOC3062M & MOC3162M, 5mA for MOC3063M & MOC3163M) and absolute max I_F (60mA).
- 4. This is static dv/dt. See Figure 9 for test circuit. Commutating dv/dt is a function of the load-driving thyristor(s) only.

Typical Performance Curves

Figure 1. LED Forward Voltage vs. Forward Current

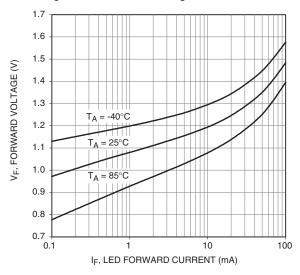


Figure 2. Trigger Current Vs. Temperature 1.6 1.5 V_{TM} = 3V NORMALIZED TO T_A = 25°C 1.4 I_{FT}, NORMALIZED 1.3 1.2 1.1 1.0 0.9 0.8 -20 20 40 100 T_A , AMBIENT TEMPERATURE (°C)

Figure 3. LED Current Required to Trigger vs. LED Pulse Width

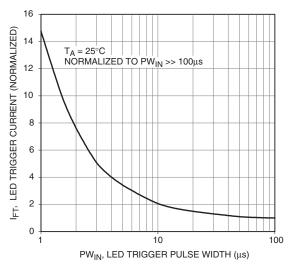
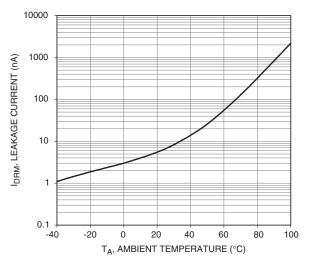



Figure 4. Leakage Current, IDRM vs. Temperature

Typical Performance Curves (Continued)

Figure 5. I_{DRM2}, Leakage in Inhibit State vs. Temperature

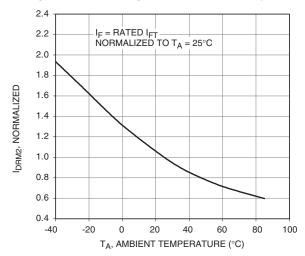


Figure 6. On-State Characteristics

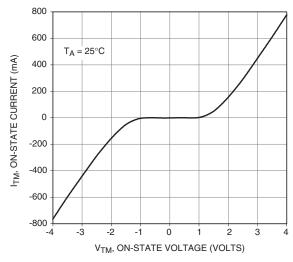


Figure 7. I_H, Holding Current vs. Temperature

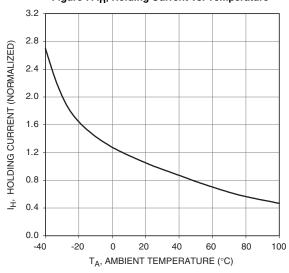
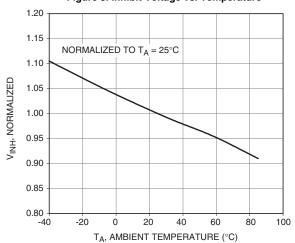
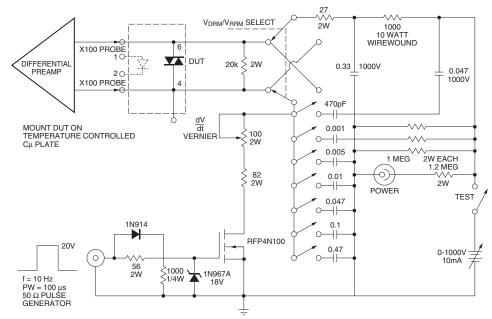




Figure 8. Inhibit Voltage vs. Temperature

- 1. 100x scope probes are used, to allow high speeds and voltages.
- 2. The worst-case condition for static dv/dt is established by triggering the D.U.T. with a normal LED input current, then removing the current. The variable vernier resistor combined with various capacitor combinations allows the dv/dt to be gradually increased until the D.U.T. continues to trigger in response to the applied voltage pulse, even after the LED current has been removed. The dv/dt is then decreased until the D.U.T. stops triggering. t_{RC} is measured at this point and recorded.

ALL COMPONENTS ARE NON-INDUCTIVE UNLESS SHOWN

Figure 9. Circuit for Static $\frac{\text{dV}}{\text{dt}}$ Measurement of Power Thyristors

Basic Applications

Typical circuit for use when hot line switching is required. In this circuit the "hot" side of the line is switched and the load connected to the cold or neutral side. The load may be connected to either the neutral or hot line.

 R_{in} is calculated so that I_{F} is equal to the rated I_{FT} of the part, 15mA for the MOC3061M, 10mA for the MOC3062M, or 5mA for the MOC3063M. The 39Ω resistor and $0.01\mu\text{F}$ capacitor are for snubbing of the triac and is often, but not always, necessary depending upon the particular triac and load used.

Suggested method of firing two, back-to-back SCR's with a Fairchild triac driver. Diodes can be 1N4001; resistors, R1 and R2, are optional 330Ω .

Note:

This optoisolator should not be used to drive a load directly. It is intended to be a trigger device only.

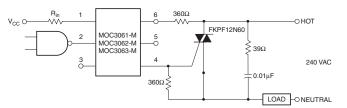


Figure 10. Hot-Line Switching Application Circuit

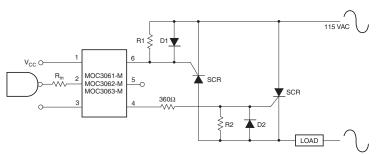
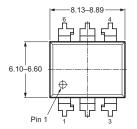
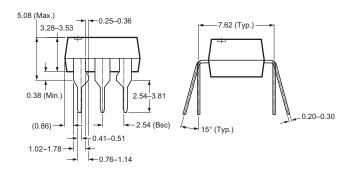
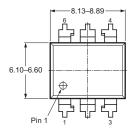
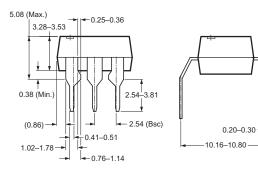
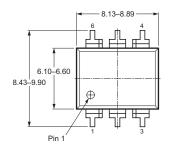
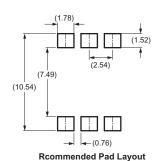




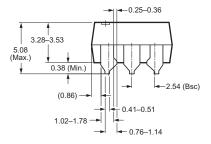
Figure 11. Inverse-Parallel SCR Driver Circuit

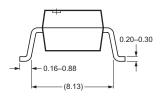

Package Dimensions


Through Hole

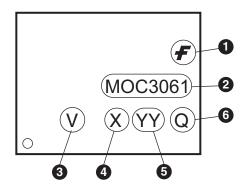



0.4" Lead Spacing





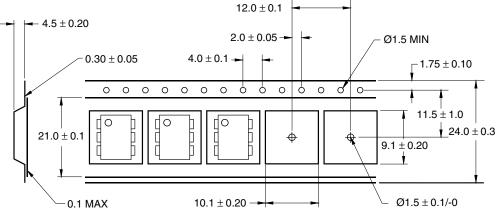
Surface Mount



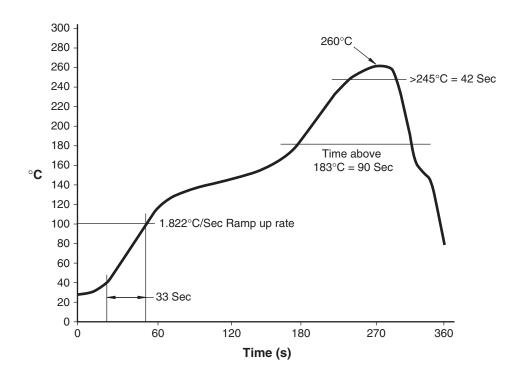
Note: All dimensions in mm.

Ordering Information

Option	Order Entry Identifier (Example)	Description
No option	MOC3061M	Standard Through Hole Device
S	MOC3061SM	Surface Mount Lead Bend
SR2	MOC3061SR2M	Surface Mount; Tape and Reel
Т	MOC3061TM	0.4" Lead Spacing
V	MOC3061VM	VDE 0884
TV	MOC3061TVM	VDE 0884, 0.4" Lead Spacing
SV	MOC3061SVM	VDE 0884, Surface Mount
SR2V	SR2V MOC3061SR2VM VDE 0884, Surface Mount, Tape and Re	


Marking Information

Definiti	ons
1	Fairchild logo
2	Device number
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)
4	One digit year code, e.g., '3'
5	Two digit work week ranging from '01' to '53'
6	Assembly package code


^{*}Note – Parts that do not have the 'V' option (see definition 3 above) that are marked with date code '325' or earlier are marked in portrait format.

Carrier Tape Specification

User Direction of Feed -----

Reflow Profile

